Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(12): 6143-6154, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38475697

RESUMEN

Male reproductive toxicity of fluoride is of great concern worldwide, yet the underlying mechanism is unclear. Pyroptosis is a novel mode of inflammatory cell death, and riboflavin with anti-inflammatory properties has the potential to protect against fluoride damage. However, it is unknown whether pyroptosis is involved in fluoride-induced testicular injury and riboflavin intervention. Here, we first found that riboflavin could alleviate fluoride-caused lower sperm quality and damaged testicular morphology by reducing pyroptosis based on a model of ICR mice treated with NaF (100 mg/L) and/or riboflavin supplementation (40 mg/L) via drinking water for 13 weeks. And then, together with the results of in vitro Leydig cell modelsm it was confirmed that the pyroptosis occurs predominantly through classical NLRP3/Caspase-1/GSDMD pathway. Furthermore, our results reveal that interleukin-17A mediates the process of pyroptosis in testes induced by fluoride and riboflavin attenuation according to the results of our established models of riboflavin- and/or fluoride-treated IL-17A knockout mice. The results not only declare a new mechanism by which fluoride induces testicular injury via interleukin 17A-mediated classical pyroptosis but also provide evidence for the potential clinical application of riboflavin as an effective therapy for fluoride toxicity.


Asunto(s)
Fluoruros , Piroptosis , Animales , Ratones , Masculino , Fluoruros/farmacología , Interleucina-17 , Ratones Endogámicos ICR , Semen/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
2.
Food Chem Toxicol ; 178: 113867, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269891

RESUMEN

Fluoride-induced male reproductive failure is a major environmental and human health concern, but interventions are still lacking. Melatonin (MLT) has potential functions in regulating testicular damage and interleukin-17 (IL-17) production. This study aims to explore whether MLT can mitigate fluoride-induced male reproductive toxicity through IL-17A, and screen the potential targets. So the wild type and IL-17A knockout mice were employed and treated with sodium fluoride (100 mg/L) by drinking water and MLT (10 mg/kg.BW, intraperitoneal injection per two days starting from week 16) for 18 weeks. Bone F- concentrations, grade of dental damage, sperm quality, spermatogenic cells counts, histological morphology of testis and epididymis, and the mRNA expression of spermatogenesis and maturation, classical pyroptosis related and immune factor genes were detected respectively. The results revealed that MLT supplementations alleviated fluoride-induced impairment of spermatogenesis and maturation process, protecting the morphology of testis and epididymis through IL-17A pathway, and Tesk1 and Pten were identified as candidate targets from 29 regulation genes. Taken together, this study demonstrated a new physiological role for MLT in the protection against fluoride-induced reproductive injury and possible regulation mechanisms, which providing a useful therapeutic strategy for male reproductive function failure caused by fluoride or other environmental pollutants.


Asunto(s)
Fluoruros , Melatonina , Ratones , Animales , Masculino , Humanos , Fluoruros/toxicidad , Interleucina-17/genética , Interleucina-17/metabolismo , Melatonina/farmacología , Maduración del Esperma , Semen , Espermatozoides/metabolismo , Espermatogénesis , Testículo/metabolismo
3.
Biol Trace Elem Res ; 200(3): 1262-1273, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33961201

RESUMEN

Long-term exposure to excessive fluorine could cause damage to various tissues and organs in human and animals. However, there is no effective antidote to prevent and cure fluorosis except for avoiding fluoride intake. As an essential nutrient, riboflavin (VB2) has been identified to relieve oxidative stress and inflammation in animal tissues caused by other toxic substances, whether it can alleviate the damage caused by fluoride is unknown. For this, 32 ICR male mice were allocated to four groups of eight each. They were treated with 0 (distilled water), 100 mg/L sodium fluoride (NaF), 40 mg/L VB2, and their combination (100 mg/L NaF plus 40 mg/L VB2) via the drinking water for 90 consecutive days, respectively. The content of bone fluoride and the histomorphology of the main organs including liver, kidney, cerebral cortex, epididymis, small intestine, and colon were evaluated and pathologically scored. The results found that fluoride caused the pathological changes in liver, kidney, cerebral cortex, epididymis, small intestine, and colon at varying degrees, while riboflavin supplementation reduced significantly the accumulation of fluoride in bone, alleviated the morphological damage to cerebral cortex, epididymis, ileum, and colon. This study provides new clues for deeply exploring the mechanism of riboflavin intervention in fluorosis.


Asunto(s)
Fluoruros , Fluoruro de Sodio , Animales , Fluoruros/toxicidad , Masculino , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo , Riboflavina/farmacología , Fluoruro de Sodio/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA